
The effect of
complexity and value on
architecture planning

in agile software development	

Michael Waterman, James Noble, George Allan

Victoria University of Wellington, New Zealand
XP 2013, Vienna

6 June 2013

Architecture and agility	

•  Agile development discourages
planning ahead

•  But architecture is about planning
ahead…

•  So how do teams strike a balance
between architecture and being
agile?

too much	

^	

– 1 –	

How much architecture?	

•  How much up-front architecture
planning do teams do?

•  What affects how much they do?
•  What is the relationship between:

o Complexity and size?
o Value and cost?

– 2 –	

0

20

40

60

80

100

0 10 20 30 40 50

Pe
rc
en
ta
ge
 o
f t
im
e
ad
de
d

to
 o
ve
ra
ll
sc
he
du
le
	

Percentage of time for architecture and risk
resolution [Source: Boehm 2011]	

Architecting

Rework

Total
Sweet spot

0

20

40

60

80

100

0 10 20 30 40 50

Pe
rc
en
ta
ge
 o
f t
im
e
ad
de
d

to
 o
ve
ra
ll
sc
he
du
le
	

Percentage of time for architecture and risk
resolution [Source: Boehm 2011]	

Architecting

Rework

Total
Sweet spot

10,000 KSLOC

100 KSLOC

Architecture design is
about people	

•  Creative and social activity:
o Based more on knowledge,

understanding, background,
experience…

o …and less on processes, methods,
frameworks

•  No single correct solution

– 4 –	

Grounded theory	

•  This research is qualitative
•  Inductive (theory follows research)
•  Very little existing research
•  Therefore, grounded theory method
•  Methodical and rigorous

– 5 –	

Steps of grounded
theory method	

Data gathering	

Coding	

Memoing	

Theory	

Constant
comparison	
 Categories	

Increasing level
of abstraction	

Iterative	

– 6 –	

Work done	

•  36 interview participants (and
documentation)

•  Variety of roles
•  Variety of domains
•  Variety of project and system types

– 7 –	

•  Standard solutions to common
problems

•  Preferred or “precooked”
architectures

•  Reduce architectural effort
o Easier to make decisions
o Easier to change decisions

Modern development
frameworks	

Source: Waterman,
Noble and Allan 2012	
– 8 –	

Modern development
frameworks	

•  Standard solutions to common
problems

•  Preferred or “precooked”
architectures

•  Reduce architectural effort
o Easier to make decisions
o Easier to change decisions

“Go with what's proven, go with what
works. [...] We don't have architectural
discussions – we don’t need to – the
problem's [already] been solved.” (P27,
CEO/agile coach)

– 8 –	

The effect of complexity
on up-­‐‑front effort [1]	

•  Complexity is typically the result of
demanding requirements

•  Complexity pushes the limits of what
development frameworks can do
•  Not common problems so cannot provide

standard solutions

– 9 –	

The effect of complexity
on up-­‐‑front effort [2]	

•  Complex systems may:
o have bespoke components,

– 10 –	

The effect of complexity
on up-­‐‑front effort [2]	

•  Complex systems may:
o have bespoke components,
o have multiple technologies,

– 10 –	

The effect of complexity
on up-­‐‑front effort [2]	

•  Complex systems may:
o have bespoke components,
o have multiple technologies, “If it's really horribly complex and you've

got to request all sorts of bits of infra-
structure from all over the show to get it to
work then it definitely slows down iteration
zero.” (P29, development manager)

– 10 –	

The effect of complexity
on up-­‐‑front effort [2]	

•  Complex systems may:
o have bespoke components,
o have multiple technologies,
o  involve legacy systems,

– 10 –	

The effect of complexity
on up-­‐‑front effort [2]	

•  Complex systems may:
o have bespoke components,
o have multiple technologies,
o  involve legacy systems,
o have many integration points.

– 10 –	

The effect of complexity
on up-­‐‑front effort [2]	

•  Complex systems may:
o have bespoke components,
o have multiple technologies,
o  involve legacy systems,
o have many integration points.

“Today's systems […] have a lot more
interfaces to external systems than older
systems which are typically standalone.
They have a lot higher level of complexity
for the same sized system.” (P14, solutions
architect)

– 10 –	

The effect of complexity
on up-­‐‑front effort [2]	

•  Complex systems may:
o have bespoke components,
o have multiple technologies,
o  involve legacy systems,
o have many integration points.

•  Complexity leads to additional design
•  Complexity is an important

determinant of how much up-front
planning teams do

– 10 –	

•  System size and complexity are related
•  But… a large system entirely within the

boundaries of the framework will have
less complexity

•  And a small system may have
demanding requirements and require
a lot of planning.

The relationship between
complexity and size	

– 11 –	

The effect of size on
up-­‐‑front effort	

•  Size is not as important as complexity
when determining the amount of up-
front planning

– 12 –	

The effect of size on
up-­‐‑front effort	

•  Size is not as important as complexity
when determining the amount of up-
front planning

– 12 –	

“If we have size that just extends the time,
it’s of little concern to us. It’s just a slightly
larger backlog, management
overhead.” (P32, development director)

The effect of size on
up-­‐‑front effort	

•  Size is not as important as complexity
when determining the amount of up-
front planning

•  Non-demanding requirements +
appropriate development framework:
o reduced complexity
o reduced up-front architecture effort
o Increased agility

– 12 –	

The effect of value and
cost on up-­‐‑front effort	

•  Agile teams do not always aim for
sweet spot

•  Less planning means early product
release and early revenue:
o Cash flow will pay for later architectural

rework
o Value is more important than cost

•  Early feedback

– 13 –	

The effect of value and
cost on up-­‐‑front effort	

•  Agile teams do not always aim for
sweet spot

•  Less planning means early product
release and early revenue
o Cash flow will pay for later architectural

rework
o Value is more important than cost

•  Early feedback

“Designing for a million users is a problem
you can have once you’ve got a million
users and you’ve got a million users worth
of revenue” (P27, CEO/Agile coach)

– 13 –	

0

20

40

60

80

100

0 10 20 30 40 50

Pe
rc
en
ta
ge
 o
f t
im
e
ad
de
d

to
 o
ve
ra
ll
sc
he
du
le
	

Percentage of time for architecture and risk
resolution [Source: Boehm 2011]	

Architecting

Rework

Total
Sweet spot

Conclusion	

•  Sweet spot graph is based on data

that predates agile
•  Complexity is a more important driver

of up-front effort than project size
•  Many agile teams are driven by

maximising value rather than
minimising cost
o Particularly those who can release early!

– 15 –	

Next steps	

•  Validation is an important part of

grounded theory
•  Feedback from agile practitioners!
•  Complete the theory

Michael Waterman
Victoria University of Wellington, New Zealand

Michael.Waterman@ecs.vuw.ac.nz

http://ecs.victoria.ac.nz/Main/GradMichaelWaterman
http://nz.linkedin.com/in/michaelwaterman

@waterman_m

