
Rapid Software

Architecture Exploration

Michael Keeling

@michaelkeeling

Conventional Wisdom:

2

It takes a long time to design
software architecture.

Some Examples…

3

Quality Attributes Workshop
(QAW)

2-3 Weeks

Architecture Trade-off
Analysis Method (ATAM)

2-3 Weeks

Software Risk Evaluation
Workshop

5 days

Empty Software Architecture
Description Template (SEI)

30 pages

4

This is a problem for
Agile software architects.

5

One week is an eternity in
Agile time.

6

7

Your Agile
Project

How old your project
feels (in “agile years”)

Same Age

Better Conventional Wisdom:

8

It takes a long time to design
software architecture…

But you don’t need to design the

whole system up front.

Agenda

• Theory

– A Strategy for Architecture Exploration

• Practice

– Rapid Exploration Practices

• Workshop!

• Reflection and Discussion

9

10

A STRATEGY FOR
ARCHITECTURE EXPLORATION

The Agile Architect’s Dilemma

11

What is the least amount of
upfront work required to

design architecture effectively?

12

A very brief introduction to the
science of design…

Design is an Optimization Problem

13

Local Maxim

Global Maxim

Rapid Exploration

14

Find the local maxims as quickly
as possible… so you can see the

global maxims.

The “Software Design Space”

15

Knowledge
about the

Problem

Knowledge about the Solution

More

More Less

Waterfall Exploration

16

Knowledge
about the

Problem

Knowledge about the Solution

More

More Less

Released
Software =

Best Possible
Design

“Mountain
Summit”

Solution Consultant Exploration

17

Knowledge
about the

Problem

Knowledge about the Solution

More

More Less

Subject Matter Expert Exploration

18

Knowledge
about the

Problem

Knowledge about the Solution

More

More Less

Agile Exploration

19

Knowledge
about the

Problem

Knowledge about the Solution

More

More Less

Agile Exploration

20

Knowledge
about the

Problem

Knowledge about the Solution

More

More Less

Potentially
Releasable

Software = Best
Design Today

Outcomes from Exploration

21

Knowledge
about the

Problem

Knowledge about the Solution

More

More Less

Outcome:
Architectural Drivers
• Features
• Qualities
• Constraints

Outcomes from Exploration

22

Knowledge
about the

Problem

Knowledge about the Solution

More

More Less

Outcome:
Design decisions
• Sketches
• Rationale
• Working Code

Choose Architecture Design

Strategies that …

• Embrace team values

– For example… reliable, adaptable,

collaborative, etc.

• Explore with purpose

– Solution vs. Problem

23

24

RAPID EXPLORATION
WORKSHOP

Four Activities to Try

• System Properties Web

• Stakeholder Map

• Round-Robin Design

• Risk Storming

25

26

Challenge and Context

29

Your table is now a team that
has been hired to build some

software…

Challenge

30

The city of Vienna has hired
you to architect a mobile

application to help people find
and pay for parking (for cars).

Parking App – High Level Features

• As a car driver I can…

– Find available parking places

– Pay to park

– Review and pay parking tickets

• As a policeman I can…

– Issue parking tickets

• As a city council member I can…

– Review historical parking data and metrics

31

A Context Diagram…

32

Parking Spots
Services

Paid / Expired
Status

Send
Payment

License plate,
Parking meter number

Map open spots,
See remaining time

Reserve
parking

Verify
Parking

System to
Be Built

Payment
Processors

City Council
User

Parker
User

View Reports

Station 1

33

System Properties Web

System Properties Web

34

Knowledge
about the

Problem

Knowledge about the Solution

More

More Less

ED-BAO Big Data

System Properties Web

37

Description Help stakeholders to collaboratively
generate, affinity cluster, and prioritize
raw quality attribute scenarios

Time Needed 1 – 3 hours (depending on the web size)

Benefits • Focus on system qualities over
functions/feature
• Visually show how two systems differ
by looking at quality attributes

Participants As many relevant stakeholders as
available – team, customer, IT, etc.

System Properties Web

Station Instructions

40

Objective: Identify raw quality attributes (“-ilities”) for the Vienna
Parking App.

Steps:
1. Review quality requirements on web.
2. Brainstorm stakeholder concerns (~3 minutes).
3. Read concerns aloud and categorize on web.
4. Observe and reflect as a group

Guidelines and hints:

• Write 1 scenario/concern per sticky note
• Everyone writes at least 1 sticky note

Station 2

41

Stakeholder Map

Stakeholder Map

42

Knowledge
about the

Problem

Knowledge about the Solution

More

More Less

Stakeholder Map

44

Description A network diagram of the people involved
with or impacted by a given system or
system design

Time Needed 30 – 45 minutes

Benefits • Identify more than the usual stakeholders
• Document, guide plans for research
• Keep the team focused on people rather
than technologies

Participants As many potential stakeholders as available
– team, customer, etc.

Stakeholder Map

Station Instructions

45

Objective: Visualize the relationships, hierarchies, and interactions
between all the people who have an interest in the system to be built.

Steps:
1. Add and annotate stakeholders collaboratively until time runs out

or the map seems complete (for now).

Guidelines and hints:

• Simple icons to represent individual people
• Label people by specific role
• Don’t represent categories of people as a single icon
• Speech bubbles represent thoughts, feelings
• Arrows connect people
• Label lines to describe relationships

Station 3

47

Round Robin Design

Round-Robin Design

48

Knowledge
about the

Problem

Knowledge about the Solution

More

More Less

49

Round Robin Design

50

Description Quickly generate and vet many architecture
design ideas through quick succession of
fast peer reviews

Time Needed 60 – 90 minutes

Benefits • Foster creativity by constraining design
• Create opportunities for unplanned
combinations.
• Encourage group ownership of the design
• Build consensus among disparate ideas.

Participants Team
(other stakeholders can help validate)

Round Robin Design

Station Instructions

51

Objective: Quickly build a collection of ideas architecting the system,
then converge ideas and start to build consensus.

Steps:
1. Design the physical (i.e. allocation) architecture.
2. Everyone sketches a design (~5 minutes)
3. Give your design to the person on the left.
4. Critique and annotate the design (~3 minutes)
5. Return papers to original author
6. Briefly discuss insights

Guidelines and hints:

• Everyone sketches
• No right or wrong answers
• Use different color ink for each critique

Station 4

53

Risk Storming

Risk Storming

54

Knowledge
about the

Problem

Knowledge about the Solution

More

More Less

Risk Storming

55
http://www.codingthearchitecture.com/2012/07/11/risk_storming.html

https://www.codingthearchitecture.com/2012/07/11/risk_storming.html

Risk Storming

56

Description Use the architecture to kick starting
brainstorming risks and visualize “trouble
spots” in architecture views

Time Needed 30 – 90 minutes

Benefits • Identify risks in the proposed architecture.
• Visualize “troubling” parts of the system
• Constrain risk identification to only
architectural concerns

Participants Team, relevant stakeholders

See: http://www.codingthearchitecture.com/2012/07/11/risk_storming.html
by Simon Brown

https://www.codingthearchitecture.com/2012/07/11/risk_storming.html

Risk Storming

Station Instructions

57

Objective: Identify and prioritize architectural risks so that a suitable
mitigation strategy can be identified.

Steps:
1. Review provided architecture view
2. Brainstorm risks, write one per sticky note
3. Place sticky notes on the most relevant area of the sketches
4. Reflect and review findings

Guidelines and hints:

• Different colored sticky notes indicate high/low “exposure”
• Look for clusters of risk or “trouble spots”
• Mitigate by designing experiments or doing research
• Variants: Rose-Bud-Thorn, Question-Fact-Idea

High Low

Web
Management

Dashboard

Mobile
Parking Client

Parking
Server

Policy
Services

User
Data

Parking
Data

Mobile Parking System
(Dynamic Perspective)

Separate user data from parking
data for privacy reasons

Client
Tier

Service
Tier

Data
Tier

NEADS
PPDS

Service

Alerts
Service

Police
Dispatch
Service

Component

3rd Party Component

Tier

Database

HTTP / Web Services

JDBC / Database

Instantiates and
Starts Thread

Thread

Legend

SMS

60

WORKSHOP!

Ground Rules

• Four activities – try to do at least 3

– Work in small groups (people at your table)

– Any order

• No right or wrong answers

– Use your imagination to fill in missing details

• Watch the clock (I’ll help too)

– Switch every ~10 minutes

• Ask me questions if you need help or clarification

• HAVE FUN!

• Tweet / Share your experiences!

– #xp2013

– #rapidarchitecture

61

Challenge

62

The city of Vienna has hired
you to architect a mobile

application to help people find
and pay for parking (for cars).

A Context Diagram…

63

Parking Spots
Services

Paid / Expired
Status

Send
Payment

License plate,
Parking meter number

Map open spots,
See remaining time

Reserve
parking

Verify
Parking

System to
Be Built

Payment
Processors

City Council
User

Parker
User

View Reports

64

WRAP-UP

Silver
Toolbox

Some Questions for Reflection

• Did certain practices need to be applied in
a specific order?

– What if this wasn’t a simulation?

• Which activity was your favorite?

• Was there an activity you hated?

• Would you use any of these activities if the
system was…

– Really big?

– Really risky?

– The same old thing we built last year?
66

Sharing Your Architecture

• System Metaphor

• Architecture Haiku

• Cartoons

• Low Fidelity Sketches

• Full Architecture Description

67

Other Workshops and Activities…

• Mini-Quality Attributes Workshop

• Mini-Software Risk Evaluation Workshop

• Design the Extremes

• Tactical Planning Circle

• System Personas

• Concern, Question, Comment

• Interface Empathy Map

• More… ?

68

Thank you!

Michael Keeling

@michaelkeeling

http://neverletdown.net

69

https://neverletdown.net/

References

• Ariadna Font, Bringing UX and Agile

Together. http://ariadna.font.cat/

• Simon Brown, Coding the Architecture.

http://www.codingthearchitecture.com

• Clements et al. Documenting Software

Architectures: Views and Beyond (2nd

Edition) 2010

70

https://ariadna.font.cat/
https://www.codingthearchitecture.com/

