Veröffentlichungen

Veronika Kotrba und Ralph Miarka, Agile Teams lösungsfokussiert coachen, 2. Auflage, dpunkt.verlag, April 2017.

Thomas Ronzon, Henning Schwentner, Veronika Kotrba und Ralph Miarka, Die 7 Schritte zum Software-Retrofit – Softskills und Hardskills Hand in Hand, Informatik Aktuell, Februar 2017.

Veronika Kotrba und Ralph Miarka, Das E.R.F.O.L.G.s-Modell für Teamentwicklung, Informatik Aktuell, März 2016.

Veronika Kotrba und Ralph Miarka, SCARF: Die fünf Grundbedürfnisse des Menschen, S. 58-62, iX Kompakt 4/2015 – Agiles IT-Projektmanagement, Heise Medien Gmbh & Co. KG, Oktober 2015.

Veronika Kotrba und Ralph Miarka, Agile Teams lösungsfokussiert coachen, dpunkt.verlag, August 2015.

Veronika Kotrba und Ralph Miarka, Lösungsfokussierte Retrospektiven, in Mark Löffler, Retrospektiven in der Praxis: Veränderungsprozesse in IT-Unternehmen effektiv begleiten, S. 117-133, dpunkt.verlag, 2014.

Veronika Kotrba, Mit Lösungsfokussiertem Führungsstil zum Erfolg, Kapitel 4.3 in B. Koch, Handbuch Kindergartenleitung, S. 331-344, KiTa aktuell, Wien, 2014.

Veronika Kotrba, 10 Tipps für lösungsfokussiertes Verkaufen, Bildung Aktuell, 2013.

Karin Kroneder und Ralph Miarka, Is There Hope for a Certified Project Manager in an Agile World? – Inspecting Behavioural Competences of Project Managers and ScrumMasters, GPM-Magazin PMaktuell, Heft 2/2011, S. 38–43, GPM Deutsche Gesellschaft für Projektmanagement e.V., TÜV Media GmbH, Köln, 2011.

Ralph Miarka, Distributed Reviews, Retrospectives, and Planning in a Global Agile Team, Cutter IT Journal „Exploring the Agile Frontiers”, Vol. 20, Nr. 5, S. 14-15, Mai 2007.

Veronika Kotrba, Solution-Focused Rating – Evaluierung einer alternativen Beurteilungsmethode, Master Thesis, PEF Universität für Management, Wien, 2006.

Master-Thesis für den Master of Science (MSc) zum systemisch-analytischen Coach, E.S.B.A. – European Systemic Business Academy, Gerstnerstraße 3, 1150 Wien, Österreich, Oktober 2012.

Abstract

Retrospektiven sind ein regelmäßiges Treffen von Teams, um die Arbeitsweise so zu verändern, dass die Projektziele effektiver und effizienter erreicht werden können. Diese Arbeit ist eine Studie, wie Teamcoaching zur Führung von Retrospektiven nutzbringend eingesetzt werden kann. Die Frage, ob beziehungsweise unter welchen Umständen dieses Vorgehen ein geeignetes Mittel zur effektiven Durchführung von Retrospektiven ist, wird gestellt und beantwortet.

Es wurden Teamcoachings in Retrospektiven mit zehn Teams aus der Schweiz und Österreich durchgeführt. Die Teilnehmenden wurden im Anschluss zu ihrer Wahrnehmung der Retrospektiven um Rückmeldungen mittels eines Fragebogens gebeten. Dabei wurden verschiedene Bereiche, wie Nutzen für die Person, für das Team und für das Unternehmen, der Prozess der Zielfindung und die Rolle der/des Coach/es, betrachtet.

Diese Arbeit zeigt, dass Teamcoaching ein Mittel für Retrospektiven sein kann, jedoch nicht immer. Coachingwerkzeuge, wie das Beteiligen aller Anwesenden, das Wertschätzen der Personen und ihrer Erfolge, das Stellen von ungewöhnlichen Fragen sowie die Anwendung der Skalierung für das Herausstellen von Unterschieden, sind hilfreich und werden geschätzt. Andererseits gibt es einige Teammitglieder, die nicht gewohnt sind die Zielfindung so detailiert durchzuführen. Sie hätten diese Phase gerne abgekürzt, um mehr Zeit für die Lösungsfindung zu verwenden. Ungefähr ein Drittel der Teilnehmenden würde Coaching in Retrospektiven weiterempfehlen.

Download: MSc-Thesis.pdf

Abstract

In software engineering, formal methods are meant to capture the requirements of software yet to be built using notations based on logic and mathematics. The formal language Z is such a notation. It has been found that in large projects inconsistencies are inevitable. It is also said, however, that consistency is required for Z specifications to have any useful meaning. Thus, it seems, Z is not suitable for large projects.

Inconsistencies are a fact of life. We are constantly challenged by inconsistencies and we are able to manage them in a useful manner. Logicians recognised this fact and developed so-called paraconsistent logics to continue useful, non-trivial, reasoning in the presence of inconsistencies. Quasi-classical logic is one representative of these logics. It has been designed such that the logical connectives behave in a classical manner and that standard inference rules are valid. As such, users of logic, like software engineers, should find it easy to work with QCL.

The aim of this work is to investigate the support that can be given to reason about inconsistent Z specifications using quasi-classical logic. Some of the paraconsistent logics provide an extra truth value which we use to handle underdefinedness in Z. It has been observed that it is sometimes useful to combine the guarded and precondition approach to allow the representation of both refusals and underspecification.

This work contributes to the development of quasi-classical logic by providing a notion of strong logical equivalence, a method to reason about equality in QCL and a tableau-based theorem prover. The use of QCL to analyse Z specifications resulted in a refined notion of operation applicability. This also led to a revised refinement condition for applicability. Furthermore, we showed that QCL allows fewer but more useful inferences in the presence of inconsistency.

Our work on handling underdefinedness in Z led to an improved schema representation combining the precondition and the guarded interpretation in Z. Our inspiration comes from a non-standard three-valued interpretation of operation applicability. Based on this semantics, we developed a schema calculus. Furthermore, we provide refinement rules based on the concept that refinement means a reduction of underdefinedness. We also show that the refinement conditions extend the standard rules for both the guarded and precondition approach in Z.

Download Thesis.pdf.zip

In Didier Bert, Jonathan P. Bowen, Martin C. Henson, Ken Robinson, editors, ZB2002: Formal Specification and Development in Z and B / Second International Conference of B and Z Users, volume 2272 of Lecture Notes in Computer Science, pages 204-225. Springer-Verlag Berlin, January 2002.

Abstract

The aim of this paper is to discuss what formal support can be given to the process of living with inconsistencies in Z, rather than eradicating them. Logicians have developed a range of logics to continue to reason in the presence of inconsistencies. We present one representative of such paraconsistent logics, namely Hunter’s quasi-classical logic, and apply it to the analysis of inconsistent Z schemas. In the presence of inconsistency quasi-classical logic allows us to derive less, but more “useful”, information.

Consequently, inconsistent Z specifications can be analysed in more depth than at present. Part of the analysis of a Z operation is the calculation of the precondition. However, in the presence of an inconsistency, information about the intended application of the operation may be lost. It is our aim to regain this information. We introduce a new classification of precondition areas, based on the notions of definedness, overdefinedness and undefinedness. We then discuss two options to determine these areas both of which are based on restrictions of classical reasoning.

Download ZB2000.pdf.zip

In Jonathan P. Bowen, Steve Dunne, Andy Galloway, and Steve King, editors, ZB2000: Formal Specification and Development in Z and B / First International Conference of B and Z Users, volume 1878 of Lecture Notes in Computer Science, pages 286-303. Springer-Verlag Berlin, August 2000.

Abstract

In the common Z specification style operations are, in general, partial relations. The domains of these partial operations are traditionally called preconditions, and there are two interpretations of the result of applying an operation outside its domain. In the traditional interpretation anything may result whereas in the alternative, guarded, interpretation, the operation is blocked outside its precondition.

In fact, these two interpretations can be combined, and this allows representation of both refusals and underspecification in the same model. In this paper, we explore this issue, and we extend existing work in this area by allowing arbitrary predicates in the guard.

To do so we adopt a non-standard three valued interpretation of an operation by introducing a third truth value. This value corresponds to a situation where we don’t care what effect the operation has, i.e. the guard holds but we may be outside the precondition.

Using such a three-valued interpretation leads to a simple and intuitive semantics for operation refinement, where refinement means a reduction of undefinedness or reduction of non-determinism. We illustrate the ideas in the paper by means of a small example.

Download ZB2002.pdf.zip