Guards, Preconditions and Refinement in Z

Ralph Miarka, Eerke Boiten, John Derrick

Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK
Email: {rm17,E.A.Boiten,J.Derrick}@ukc.ac.uk

Abstract. In the common Z specification style operations are, in gen-
eral, partial relations. The domains of these partial operations are tra-
ditionally called preconditions, and there are two interpretations of the
result of applying an operation outside its domain. In the traditional
interpretation anything may result whereas in the alternative, guarded,
interpretation the operation is blocked outside its precondition.

In fact these two interpretations can be combined, and this allows rep-
resentation of both refusals and underspecification in the same model.
In this paper we explore this issue, and we extend existing work in this
area by allowing arbitrary predicates in the guard.

To do so we adopt a non-standard three valued interpretation of an
operation by introducing a third truth value. This value corresponds to
a situation where we don’t care what effect the operation has, i.e. the
guard holds but we may be outside the precondition.

Using such a three valued interpretation leads to a simple and intuitive
semantics for operation refinement, where refinement means reduction of
undefinedness or reduction of non-determinism. We illustrate the ideas
in the paper by means of a small example.

1 Introduction

In the states-and-operations (abstract data type) specification style in Z, opera-
tions are in general partial relations. The domains of these partial relations
are traditionally called preconditions. Depending on which context the abstract
data types are used in, there are two interpretations of the result of applying
an operation outside its domain. In the traditional interpretation [11], anything
may happen outside the precondition (including divergence); in the blocking
(guarded) interpretation the operation is not possible. The latter interpretation
is the common one when modelling reactive systems or combining Z with pro-
cess algebra, and also in Object-Z. It is also called ’firing condition’ or ’enabling
condition’ interpretation [9].

It has been observed that it is often convenient to use a combination of these two
interpretations, which allows both modelling of refusals and underspecification.
One way of doing this is by having explicit guards as in B [1] or in Fischer’s work
[5]. In this paper we generalise existing work by allowing arbitrary predicates in

the guard. Furthermore, we give a model of refinement, refining both guard and
precondition.

Our inspiration comes from a non-standard semantics of operations, viz. an
interpretation in three-valued logic. The third logic value is called “don’t care”,
denoted L. We do occasionally refer to “undefinedness”, although this should
probably be distinguished from the kind of undefinedness discussed by Valentine
[15] and solved by VDM’s third logic value. Using a three-valued logic leads to a
simple and intuitive notion of (operation) refinement: refinement is reduction of
undefinedness or reduction of non-determinism (or both). It would even allow an
alternative definition of refinement which preserves “required non-determinism”
[10,12].

However, such an interpretation of operations requires a more expressive no-
tation than normal operations with explicit guards. In that notation, we take
the operation to be false (impossible) outside its guard, and undefined where the
guard holds but not the precondition. Clearly this allows us to state that, for cer-
tain before states, any after state “is undefined”, but not that some after states
are undefined, and others possible or impossible. We will define a syntax which
is sufficiently expressive for this semantics, and define operation refinement rules
for this which generalise the traditional ones.

The remainder of this work is structured as follows. In Section 2, we will demon-
strate by means of an example (a simple money transaction system) that a com-
bination of the traditional and blocking interpretations is sometimes required.
Then, in Section 3, we define a schema notation including both guards and effect
schemas. Based on that we define regions of operation behaviour, i.e. whether
an operation is within or without the guard, or within or without the precondi-
tion.These regions can also be defined in a three valued interpretation, which we
will give in Section 4. Using such a three valued interpretation leads to a simple
and intuitive notion of refinement that generalises classical operation refinement.
We introduce the rules in Section 5 and show their compatibility to the classical
ones. Finally, we discuss related work (Section 6), as well as summarise our work
including a discussion of possible future research (Section 7).

2 Guards and Preconditions in Z

2.1 Example

Consider the following example of a simple money transaction system. It allows
to transfer a positive amount of money to a person’s bank account. Therefore,
we need a set, of bank account holders

[PID]

Each bank account is characterised by its holder and the amount of money in
it. Of course, we allow negative amounts in the account as well. On the other

hand, not every person in the above set has to have a bank account, therefore,
a collection of accounts is a partial function. Further, total is a derived state
component which calculates the amount of money in our bank by taking the
sum of the money in all accounts.

__ Bank
account : PID + 7
total : Z

total = > z : dom account e account(x)

We describe a transaction that will transfer a given amount of money to some-
one’s bank account. Clearly the amount transfered has to be positive, because
we do not want to be able to decrease someone else’s account.

__transfer
ABank
a? : 7
p? . PID

a? >0
p? € dom(account)
account’ = account ® {p? — account(p?) + a?}

2.2 Classical Precondition and Guarded Interpretation

In the above example, two conditions have to be fulfilled for a transfer to be
successful. On the one hand, the amount must be positive and on the other
hand the receiving person must have an account. These conditions are expressed
in the following schema:

__pre transfer
Bank

a? : 7

p?: PID

a? > 0 A p? € dom account

which is obtained as usual by existentially quantifying over the after state in
transfer.

But what happens if we try to apply the operation outside of these conditions?
There are two possible interpretations: the precondition interpretation, allowing
the operation, and the guarded interpretation, preventing it. A related issue
is refinement, the development from a specification towards a more concrete
representation. How do both interpretations deal with it?

In the classical Z interpretation a precondition represents the set of states where
the operation is defined, i.e. guaranteed to produce the specified result. Out-
side the precondition the operation is considered to be undefined which means
that the operation can do anything including non-termination (“divergence”).
Therefore, refinement can, apart from reduction of non-determinism, weaken
a precondition, allowing one to widen the scope of the operation and thereby
reduce the area of undefinedness.

Other specification languages, like Object-Z, treat the precondition differently.
There the precondition is considered as a guard, blocking the operation if the
precondition is not fulfilled. Such an interpretation is occasionally used in Z
as well, for example, when modelling reactive systems (see for example [9,13]).
Refinement of guards is treated differently. In Object-Z, for example, one is
not allowed to change the guard. However, other approaches, like [10] where
preconditions and guards are combined, allow strengthening of guards, i.e. the
reduction of the applicability of the operation. They also allow to weaken any
precondition. However, the precondition is the upper bound for strengthening
the guard and the guard is the lower bound for weakening the preconditions.

2.3 Refinement

In the precondition interpretation, the following two refinements of transfer
would be possible, each of them weakening one of the constraints of pre transfer.
First, we could allow the creation of accounts:

__ Ci_transfer
ABank

a? : 7

p?: PID

a? >0
p? & dom(account) = account’ = account ® {p? — a?}
p? € dom(account) = account’ = account ® {p? — account(p?) + a?}

This appears a sensible refinement, however, in the guarded interpretation it
would be forbidden.

The guarded interpretation also forbids the more dangerous

— Cy_transfer
ABank
a? : 7
p? . PID

p? € dom(account)
account’ = account ® {p? — account(p?) + a?}

which, by removing the requirement that a? > 0 suddenly allows withdrawal
of someone else’s money. In the precondition interpretation this is still a valid
refinement, though.

Apparently, the two predicates in pre transfer have a different status: a? > 0 is
more like a guard, whereas p? € dom(account) is more like a precondition. Our
example shows that each interpretation alone is not always sufficient. Therefore,
we want to have both guards and preconditions in the same specification.

2.4 Combining Guards and Preconditions

The idea is not new and there are a number of essentially identical approaches.
For example, Fischer [4, 5] provides a solution to this problem by using an “en-
abled” schema to denote the guard and an “effect” schema for the classical
operation schema with its precondition interpretation. Using this approach the
transfer operation in our example evolves to

__F_transfer
_enable_transfer_____ _effect_transfer
a? : 7 ABank
a? : 7
o
a?20 p? : PID

p? € dom(account)
account’ = account®
{p? = account(p?) + a?}

where enable refers to the guard of the operation and effect to the effect of
the operation. Now the operation F_transfer is blocked whenever a? is negative.
However, the update of someone’s account is only guaranteed if the account
already exists. In case it does not divergence may occur.

With this notation we are able to develop refinement rules which deal with
the guards and preconditions in an appropriate fashion. Such refinement rules
would allow one to weaken the precondition of F_transfer (i.e. effect_transfer),
reduce any non-determinism in the specification, and potentially strengthen the
guard (i.e. enable_transfer). With these rules in place we are able to weaken
the precondition p? € dom(account) provided we do preserve the guard a? > 0.

However, according to Fischer [5] the guard “must contain unprimed state vari-
ables only”. Unfortunately, this would still allow undesired refinements, as the
after state is completely unconstrained for before states satisfying the guard but
not the precondition. Sensible restrictions like

{p?} < account’ = {p?} < account
and total’ = total + a?

which express that no one else’s account changes and that the total amount
of money cannot exceed the previous amount plus the newly added, cannot
be imposed. Adding this restriction to effect_transfer would have no effect,
because it can be derived from effect_transfer already. However, for states
currently outside the precondition but within the guard, we have no way of
imposing this as a postcondition.

3 A Syntax for Using Generalised Guards

In this section we introduce the syntax to describe an operation in terms of
guards and preconditions. We then use this characterisation to define the differ-
ent regions of definition that an operation can have. The operation syntax we
introduce again splits an operation into two parts consisting of its guard and its
effect in a way similar to that described in Section 2.4.

3.1 Operations with Guards and Preconditions

An operation Op is a defined as a pair (gd_Op, do_Op), where gd denotes the
guard of the operation and do the classical operation itself, and it is given by a
schema,

Op

—gd_Op _do_Op
Decgyq Decq,
predgq predg,

such that Dec denote the declarations of the guard and operation respectively,
and, we require that Decyq are (textually) contained in Decg,. One could require
that do_Op = ¢gd_Op, though we avoid such a restriction by using gd_Op A
do_Op rather than just do_Op in any situation where such a restriction would
be relevant. In particular, when we refer to just Op in an expression, this is taken
to be an abbreviation for gd_Op A do_Op. Note, that whenever = gd_Op holds
we do not care about do_Op anymore. Note as well, that in gd_Op we allow
any arbitrary predicate which may involve after states (S') too, and indeed, the
signature reflects this.

For example, the previous discussed operation transfer with the desired extension
of the guard can now be expressed as

__transfer2

_gd_transfer2 _do_transfer2

ABank ABank

a? 7 a? %

p?: PID p?: PID

a?>0 p? € dom(account)

total' = total + a? account’ = account®

{p?} 4 account’ = {p? — account(p?) + a?}

{p?} <4 account

Having primed state variables in the guard causes the guard not to be exe-
cutable, because we cannot test the after state beforehand. However, we may
consider specifications that contain undefined areas as not implementable any-
way, because some refinement is still missing. For refinement rules which remove
undefinedness see Section 5 (and 6.4). Primed state variables in the guard do
not limit implementations in general, they just give us more expressiveness.

3.2 Regions of Before States

Using such a notation, we can describe (at least) three different possibilities for
a particular pair of before/after states:

e gd_Op holds and do_Op holds: the states belong to the operation.

e gd_Op holds but do_Op does not hold: the states may or may not belong to
the operation, we don’t care.

e gd_Op does not hold: we do not wish the states to belong to the operation.
(Note, that this makes do_Op for this pair of states redundant information.)

Based on this description, we can define a number of regions of before states
that are of interest. The next section then will formalise this description in a
three-valued logic, and Section 5 will present a refinement relation that conforms
with the above intuition.

For simplicity, let us take Decg, = Decyqg = AS in the following definitions.
Impossible. The impossible region is the set of states where the operation is
blocked, i.e. it is always going to fail.

impo(Op) =[S |~ 35" e gd_Op]

Analysing our example, we identify that the operation transfer2 is always re-
jected when the amount a? is negative, i.e. impo(transfer2) = [Bank, a? : Z,p? :
PID | a? < 0].

Precondition. The precondition region is the area where the operation is pos-
sible and well defined. It is defined by

pre(Op) =[S | 35" e gd_Op A do_Op]

Observe that this is consistent with our convention of Op denoting gd_Op A
do_Op. Then this results in the following precondition for our example:
pre(transfer2) = [Bank, a? : Z,p?: PID | p? € dom(account) A a? > 0].

Guard. The guarded region is simply the complement to the impossible region,
i.e. it is the area where the blocking predicate holds.

guard(Op) =[S | 35" e gd_Op]

This, however, is the same as calculating the precondition of the guarded part
of the operation, i.e. guard(Op) = pre(gd_Op). Then it holds for our example
guard(transfer2) = pre(gd_transfer2) = [Bank, a? : Z,p? : PID | a? > 0].

Here it is clear that our approach is strictly more expressive than Fischer’s:
guard(Op) contains an abstraction of the information in our approach, whereas
in his pre(enable) = enable. In transfer2 the guard is a? > 0, loosing the infor-
mation that any widening of the precondition should respect {p?} € account’ =
{p?} 4 account and total' = total + a?.

Undefined. Given the regions defined by guard and precondition we could define
a “completely undefined” region as the difference between guard and precondi-
tion. This would be

undef(Op) =[S |3 S e gd_Op A (-~ 35" @ gd_Op A do_Op)]

In the initial transfer operation it is [Bank,a? : Z,p? : PID | a? > 0 A p? &
dom(account)] whereas in transfer2 this region is empty.

4 Three Valued Interpretation

In the last section we defined several regions according to pairs of before/after
states. We distinguished three different possibilities: First, the region where
gd_Op does not hold, i.e. where the operation should be impossible. Second,
the region where both gd_Op and do_Op hold, i.e. where after states belong to
the operation. Third, the remaining region where gd_Op holds but do_Op does
not hold. In that case the outcome of the operation is undefined. These three
regions are depicted in Figure 1 and can be naturally described using a set of
three truth values {f,t, L} respectively.

4.1 Semantical Description of the Regions

We want to define val Op to be a mapping from the regions into the three truth
values given above. Therefore, we define first the relational representation of an
operation schema in the obvious way, such that if Op is an operation on state S

Undefined
(gd_Op and not do_Op)

Impossible
(not gd_Op)

Defined
(gd_Op and do_Op)

Fig. 1. Guard and Precondition

with input and output, rel Op is a binary relation between bindings of type S
plus input and bindings of type S plus output.’

Further, we define a three valued boolean-like type by
bool3 ==t |f| L

Now the three valued interpretation of an operation Op = (gd_Op, do_Op) can
be defined as follows:

val Op = {xz; y | (z,y) €rel Op o (z,y) — t}
U{z; y|(z,y) ¢ rel gd_Op o (z,y) — £}
U{z; y|(2,y) € rel (9d_Op A =do_Op) ® (z,y) — L}

We use a table style notation to relate before states and after states of an opera-
tion by means of the possible outcome, i.e. by val Op. For example, given an
operation

__ Filter
_gd_Filter _do_Filter
a? : 7 a? : 7
b! : Z b!: Z
a? >0 even(a?)
b! < a?

which takes only a positive number as input and returns any number less or
equal to it if the given number is even. Then the table representation is

1 Cf. Appendix A for a definition of rel, and a fully typed version of val.

P 1012345 ...

|
—_ e

U W N~ O
e e e
ek
ek
ek
FekEEFEE=mm
FekEEFEE=mm
FEFERE™m™

4.2 Meaning of Refinement

Operation refinement is defined as removal of undefinedness as well as non-
determinism. Taking our three valued interpretation and the above representa-
tion then we can explain refinement intuitively as replacing any L by t which
may enlarge the precondition region or by replacing any L by f which in turn
may reduce the guarded region. Furthermore, we can replace multiple t in a line
by f (as long as one t remains), in order to reduce non-determinism. Note that
the later step does not change either the precondition nor the guarded region.

Let us consider our Filter operation from above in order to clarify the presented
notion of refinement. Therefore, we introduce a possible refinement C_Filter.

__ C_Filter
_gd_C_Filter _do_C_Filter
a? : 7 a? : 7
b! - 7 b!:7Z
a? >0 even(a?)
bl < a? bl =a?/2

The following refinement took place. First, we ensure that b! is always less than
a?. This is done by strengthening the guard and corresponds to changing L to
f for all cases where b! > a?. Note, that this refinement step also strengthens
the postcondition of Filter in some cases. Second, we remove non-determinism
by providing a more concrete representation of the output in case that a? is
even. This is done by replacing multiple t by f. Weakening of the precondition
did not take place but we may define an output for the case that a? is an odd
number in another refinement step. However, the result will always be bound
by the newly introduced predicate in the guard. The outcome of this refinement
step is illustrated in the following table.

Pl 1012345, ..

|
—_ e

I S N N A i
0 I S N N A i
1 L1fffff
2 L1tffff
3 1111 fff
4 111t lff
5 L1111 11f

5 Operation Refinement

In this work, we will restrict ourselves to operation refinement. Our work is
intended to generalise the classical approach of refinement. In this section, we
first present our generalised rules of refinement which we then apply to the
transfer example. Finally, we show that our new refinement conditions indeed
generalise both the guarded and the preconditioned approach.

5.1 Rules for Operation Refinement

Given an abstract operation AOp = (gd_AOp, do_AOp) and a concrete operation
COp = (gd_COp, do_COp) both over the same state State with input z? : X
and output y! : Y, then COp refines AOp, denoted AOp C COp, if and only if
applicability (1) and correctness (2) hold:

(1) V State; z? : X e pre AOp F pre COp
(2) V State; State’; z7:X; y!: Y epre AOp A COp+ AOp

The first condition allows to weaken the precondition and the second condition
ensures that the refined operation does at least what the abstract operation did.

Additionally, we allow strengthening of guards:

(3) V State; State’; z?7:X; y!: Y e gd_COp - gd_AOp

Conditions (1) and (3) together ensure that the precondition is the upper bound
for strengthening the guard and that the guard is the lower bound for weakening
the precondition.

We observe that the correctness rule can be formally weakened using (3):

pre AOp A COp = AOp
= {definition of Op}

pre(gd_AOp A do_AOp) A gd_COp A do_COp = gd_AOp A do_AOp
= {using gd_COp = gd_AOp}

pre(gd_AOp A do_AOp) A gd_COp A do_COp = do_AOp
= {definition of Op}

pre AOp A COp = do_AOp

However, it turns out nice that the shape of the classical refinement rules is
preserved when we use the introduced abbreviation.

5.2 Example

In Section 2 we introduced a simple money transaction system that allows to
put money into the account of an existing customer. We showed via an example
that using only the guarded or precondition interpretation limits the expressive-
ness, and also perhaps allows unintended refinement. In our combined approach
we solved these problems. Therefore, we are now able to express the following
refinement of the transfer operation:

— C_transfer
—gd_C_transfer —___do_C_transfer
ABank ABank
a? 7 a? %
p? 7 p?: PID
a?>0 p? & dom(account) =
total' = total + a? account’ = account ® {p? — a?}
{p?} 9 account’ = p? € dom(account) =
{p?} <4 account account’ = account®
{p? = account(p?) + a?}

First, we strengthened the guard gd_transfer. Now, the money to be transfered
has to be positive and we are not permitted to change another person’s bank ac-
count, no matter what future refinement will do to the precondition. Second, we
also refined the do_transfer operation. We weakened the precondition of transfer
to handle the case that the receiving user does not have an account. In this case
we allow the creation of a new bank account which will have the amount a? as
initial input.

5.3 Generalisation of Traditional Refinement Rules

Our concept of refinement is a valid generalisation of the traditional operation
refinement rules in both the guarded and the preconditioned approach. Taking
gd_Op = pre Op and do_Op = Op or gd_Op = true and do_Op = Op, respec-
tively, we show that our refinement rules reduce to the traditional ones.

Guarded Approach. In the guarded interpretation the guard is the precondi-
tion of the operation. Therefore, we use gd_Op = pre Op and do_Op = Op.

Let Op; = (9d_Op1, do_Op;) = (pre AOp, AOp) and Op, = (gd_Opz, do_Op)
(pre COp, COp). We show that for this choice of Op;, Op- it holds Op; € Ops
AOp C COp in the guarded approach.

(1) Applicability.

pre Op; F pre Op,
= {Op = (9d_Op A do_Op)}

pre(gd_AOp A do_AOp) - pre(gd_COp A do_COp)
= {gd_Op = pre Op and do_Op = Op}

pre(pre AOp A AOp) F pre(pre COp A COp)
= {simplification: pre Op A Op = Op}

pre AOp + pre COp

(2) Correctness.

pre Op1 A Opz = Opy
= {Op = (9d-Op A do_Op)}

pre(gd_AOp A do_AOp) A (gd-COp A do_COp) + (9d—AOp A do_AOp)
= {gd_Op = pre Op and do_Op = Op}

pre(pre AOp A AOp) A (pre COp A COp) + (pre AOp A AOp)
= {simplification: pre Op A Op = Op}

pre AOp A COp = AOp

(3) Strengthening.

9d_Opz = gd_Op;
= {9d_Op, = pre AOp, gd_Op, = pre COp}
pre COp + pre AOp

Applicability and strengthening together result in the fact the pre COp =
pre AOp, i.e. the classical condition in Object-Z that a guard cannot be strength-
ened nor weakened. The correctness rule is as in classical refinement as well.

Precondition Approach. In order to show that our approach is a generalisa-
tion of the precondition approach, we consider that the guard of the operation
is the weakest possible, i.e. gd_Op = true. Then our notation coincides with the
classical one where do_Op = Op. Using the fact that we consider Op = gd_Op A
do_Op it is easy to show that applicability (1) and correctness (2) hold. The rule
for strengthening (3) evaluates to V State; State’; z? : X; y!: Y e true which
means there is no strengthening at all. Therefore, in the case of no guards our
refinement rules are equivalent to the classical ones.

6 Related and Further Work

6.1 Strulo’s Work

In [13] Strulo attempts to unify both the precondition and the guarded inter-
pretation in order to model passive and active behaviour in Z accordingly. In
his work, Strulo uses the term firing condition rather than guard. An opera-
tion is then described by a single state schema, plus a label indicating whether
the operation is either active or passive. A distinction is made between active
operations being impossible or divergent, by interpreting before states which
allow all possible after states as divergent. This encoding extends the guarded
approach but is somewhat artificial. In particular, addition or removal of state
invariants has subtle consequences for which states belong to the “impossible”
or “divergent” regions.

6.2 The (R, A)-Calculus

Doornbos’ (R, A)-calculus [3] separates well-definedness of an operation from its
effect, in an abstract setting of binary relations and sets. An operation (R, A)
consists of a set A essentially representing its precondition, and a relation R spec-
ifying its effect. This is substantially different from having a relation with an ex-
plicit guard, in particular it allows the specification of “miracles”. The fragment
of the calculus satisfying A C dom R (i.e., the “law” of the excluded miracle),
is generalised by our calculus, viz. (gd_Op, do_Op) = (R, A < R). Doornbos also
draws a parallel between the (R, A) calculus and weakest (liberal) preconditions
which suggests a similar exercise would be possible for our calculus.

6.3 Hehner and Hoare’s Predicative Approach to Programming

In [6-8] the authors consider a specification to be a predicate of the form P = @
meaning that if P is satisfied, then the computation terminates and satisfies Q.
A specification S is refined by a specification T if all computations satisfying T
also satisfy S, i.e. the reverse implication S < T (T O S). This allows weakening
of the precondition P as well as strenghtening of the postcondition Q.

Within this approach, the predicate guard A (pre = post) in a schema body
would express nearly the desired effect under the guarding interpretation of Z
schemas. In this interpretation, a false guard causes the specification to be false,
i.e. impossible, and a false precondition pre leads to the specification being true,
which in turn allows any output.

However, the advantage of our approach with two schemas gd and do is a certain
independence of the guard and precondition. Even when the precondition is false,
not every output is permitted: it is still restricted by the guard.

6.4 Refinement Rules for Required Non-Determinism

A different interpretation is possible for the operations in three-valued logic
that we have described. Various authors (e.g. [10,12]) have argued that for be-
havioural specifications, the traditional identification of non-determinism with
implementation freedom is unsatisfactory. They would like the opportunity to
specify required non-determinism, which implies a need for additional specifi-
cation operators to express implementation freedom. Refinement rules should
then remove implementation freedom but not non-determinism. Steen et al [12]
describe such a calculus, obtained by adding a disjunction operator to LOTOS.

We could give a similar calculus in Z by reinterpreting the three-valued opera-
tions described above. As before, when the operation evaluates to f for a partic-
ular before and after state, it denotes an impossibility. However, the collection
of after states that are related by t to a particular before state represent required
non-determinism. As a consequence, none of these t values may be removed in
refinement. Finally, the collection of after states that are related by L to a par-
ticular before state represent an implementation choice, i.e. at least one of those
after states will need to be related by t in a final refinement.

As a consequence, expressed in terms of the tabular representation used before,
refinement rules for required non-determinism and disjunctive specification are:

e if a line contains a single L, it is equivalent to t (required choice from a
singleton set);

e if a line contains multiple occurrences of L, some but not all of them may
be changed to f (reducing possibility of choice);

e any | may be changed to t (in particular, an implementation choice between
several after states may be refined to a non-deterministic choice between
some of them).

This approach generalises only the guarded approach — the precondition just
characterises those before states for which possible after states have been de-
termined already. It also prevents some undesired interaction between removing
undefinedness and increasing determinism.

7 Conclusion and Future Work

In this work we presented the idea of using a three-valued interpretation of opera-
tions to combine and extend the guarded and precondition approaches. Using
this non-standard interpretation we were able to present a simple and intuitive
notion of operation refinement, which generalizes the traditional refinement re-
lations.

A full theory of refinement would also include a notion of data refinement. How-
ever, when the retrieve relation is a two-valued predicate the extension becomes

natural. It remains an open question what might be represented by a three-valued
retrieve relation.

In our interpretation of pairs of schemas (gd_Op, do_Op) we identified only three
regions. Clearly, we could further distinguish the areas = gd_Op A = do_Op and
= gd_Op A do_Op. The latter area might be regarded as representing “miracles”
or inconsistency. Detecting and managing inconsistency between the guarded
and the preconditioned region is another of our topics for future research.

Further, we would like to develop a schema calculus for the operators of three-
valued logic.

Acknowledgement

We like to thank all the anonymous referees for their corrections and helpful
suggestions in order to improve this work.

References

1. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. Jonathan P. Bowen, Andreas Fett, and Michael G. Hinchey, editors. ZUM ’98: The
Z Formal Specification Notation, Proceedings of the 11th International Conference
of Z Users. Lecture Notes in Computer Science 1493. Springer Verlag, Berlin
Heidelberg New York, September 1998.

3. H. Doornbos. A relational model of programs without the restriction to Egli-Milner
constructs. In E.-R. Olderog, editor, PROCOMET ’9/, pages 357-376. IFIP, 1994.

4. Clemens Fischer. CSP-OZ: A Combination of Object-Z and CSP. Technical Re-
port TRCF-97-2, Universitat Oldenburg, Fachbereich Informatik, PO Box 2503,
26111 Oldenburg, Germany, April 1997. Online: http://theoretica.Informatik.
Uni-0ldenburg.DE/~fischer/techreports.html (last access 10/01/2000).

5. Clemens Fischer. How to Combine Z with Process Algebra. In Bowen et al. [2],
pages 5-23.

6. Eric C. R. Hehner. A practical theory of programming. Springer Verlag, 1993.

7. Eric C. R. Hehner. Specifications, programs, and total correctness. Science of
Computer Programming, 34(3):191-205, July 1999. Ounline http://www.elsevier.
com/cas/tree/store/scico/sub/1999/34/3/563.pdf (last access: 09/05/2000).

8. C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice Hall,
1998.

9. Mark B. Josephs. Specifying reactive systems in Z. Technical Report PRG-19-91,
Programming Research Group, Oxford University Computing Laboratory, 1991.

10. K. Lano, J. Bicarregui, J. Fiadeiro, and A. Lopes. Specification of Required Non-
determinism. In John Fitzgerald, Cliff B. Jones, and Peter Lucas, editors, FME’97:
Industrial Applications and Strengthened Foundations of Formal Methods (Proc.
4th Intl. Symposium of Formal Methods Europe, Graz, Austria, September 1997),
Lecture Notes in Computer Science 1313, pages 298-317. Springer-Verlag, Septem-
ber 1997.

11. J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall International
Series in Computer Science. Prentice-Hall International (UK) Ltd., 2nd edition,
1992. Online: http://spivey.oriel.ox.ac.uk/ mike/zrm/index.html(last ac-
cess 26/07/1998).

12. M.W.A. Steen, H. Bowman, J. Derrick, and E.A. Boiten. Disjunction of LOTOS
specifications. In T. Mizuno, N. Shiratori, T. Higashino, and A. Togashi, editors,
Formal Description Techniques and Protocol Specification, Testing and Verifica-
tion: FORTE X / PSTV XVII ’97, pages 177-192, Osaka, Japan, November 1997.
Chapman & Hall. Online: http://www.cs.ukc.ac.uk/pubs/1997/350 (last access:
20/01/2000).

13. Ben Strulo. How Firing Conditions Help Inheritance. In Jonathan P. Bowen and
Michael G. Hinchey, editors, ZUM’95: The Formal Specification Notation, Lecture
Notes in Computer Science 967, pages 264-275. Springer Verlag, 1995.

14. TIan Toyn. Z Notation: Final Committee Draft, CD 13568.2, August24 1999. Online:
http://www.cs.york.ac.uk/~ian/zstan/ (last access 09/05/2000).

15. S. H. Valentine. Inconsistency and Undefinedness in Z — A Practical Guide. In
Bowen et al. [2], pages 233-249.

Appendix A: Relational View of Operations

In this appendix we give a formal definition of the relational view of an operation
schema, as a binary relation between the appropriate sets of bindings. Binding
types are not first class citizens in “traditional” Z, but using notations and
conventions from the Draft Z Standard [14] we can provide a sensible typing to
the operations defined here.

Define the signature of a schema by changing its predicate to true:
XOp=0pV-0Op

Using the precondition operator, we can define “before” and “after” signatures
of a schema by:

Xpes Op = X(pre Op)

Eaﬂop = szef Op [] EOp

By the conventional interpretation of the precondition operator, Xy.; Op will
contain Op’s before state and any inputs; X, Op contains its after state and
any outputs.

In order to provide a type for the relational view of an operation, we have to
define the types of “before”-bindings and “after”-bindings of an operation. This
could be done explicitly using quantification and filtering over sets of names as
in the Draft Standard for pre, but also using just its [o] notation for binding

types.

Every (well-defined) schema Op has a unique type of the form P[o]. Let us denote
this o by b°P; define b,g = b>OP and analogously b, p . Then the relational
view of an operation is deﬁned by

rel Op = {z: [by2]; y : [b7] | 3ZOp o 2= OTper Op A
y=0X,;0p A Ope(z,y)}

The definition of val Op as given in Section 4 actually requires a slight modi-
fication when X' Op and X gd_Op are different. Let the extension ext of Op; to
the signature of Opy be defined by:

Op: ext Op; = [XOp2 | Op:]
Then

| (z,y) €rel Op o (z,y) — t}
(z,y) & rel(¢gd_Op ext do_Op) e (z,y) — £}

val Op = {z: [b,g?], K [b’gf
|
| (z,y) € rel (9d_Op A =do_Op) ® (z,y) — L}

/4
t
U{z: [bzze?] y'[b%«f
U {z: [byofls y o [bgyy

